

Benjamin Milde, Chris Biemann

UNSPEECH: UNSUPERVISED SPEECH CONTEXT EMBEDDINGS

Motivation

Motivation - Context

^I Example in the style of: Aren Jansen, Samuel Thomas, and Hynek Hermansky. 2013. Weak top-down constraints for unsupervised acoustic model training. In ICASSP, pages 8091–8095.

Inspiration - Negative sampling

- Word2vec, skipgram with negative sampling
- Binary task instead of directly predicting surrounding words
- Is "dark" + "suit" a context pair?

Context example

Context example

Example samples

5. Sep 2018 Unspeech: Unsupervised Speech Context Embeddings, Benjamin Milde, Chris Biemann

Proposed model

Negative sampling loss

$$NEG_{loss} = -k \cdot log(\sigma(emb_t^T emb_c)) -\sum_{i=1}^k log(1 - \sigma(emb_{neg1_i}^T emb_{neg2_i}))$$
(1)

- The objective function is similar to negative sampling in word2vec
- But we are not contrasting emb_t with a emb_neg and choose two random unrelated samples instead for the negative sum.

Negative sampling loss

$$NEG_{loss} = -k \cdot log(\sigma(emb_t^T emb_c)) -\sum_{i=1}^k log(1 - \sigma(\underline{emb_{neg1_i}^T emb_{neg2_i}}))$$
(2)

- The objective function is similar to negative sampling in word2vec
- But we are not contrasting emb_t with a emb_neg and choose two random unrelated samples instead for the negative sum.

Applying a trained unspeech model

Unspeech rep. of an utterance

Figure: Windowed unspeech-64 representation

TSNE plot TED-LIUM dev set

Figure: TSNE plot of unspeech vectors averaged across utterances, TED-LIUM dev set

Example Samples

Evaluation

- Speaker embedding
- Context clustering
- ASR evaluations with Kaldi:
 - Context clustering → cluster-ids in speaker adaptation
 - Providing TDNN-HMM acoustic models with unspeech context embeddings

Table: Comparison of English speech data sets used in our evaluations

	hours			speakers		
dataset	train	dev	test	train	dev	test
TED-LIUM V2	211	2	1	1273+3	14+4	13+2
Common Voice V1	242	5	5	16677	2728	2768
TEDx (crawled)	9505 41520 talks					

Table: Equal error rates (EER) on TED-LIUM V2 – Unspeech embeddings correlate with speaker embeddings.

Embedding	EER				
TED-LIUM:	train	dev	test		
(1) i-vector	7.59%	0.46%	1.09%		
(2) i-vector-sp	7.57%	0.47%	0.93%		
(3) unspeech-32-sp	13.84%	5.56%	3.73%		
(4) unspeech-64	15.42%	5.35%	2.40%		
(5) unspeech-64-sp	13.92%	3.4%	3.31%		
(6) unspeech-64-tedx	19.56%	7.96%	4.96%		
(7) unspeech-128-tedx	20.32%	5.56%	5.45%		

EER = equal error rate, point on a false positive / false negative curve, where both error rates are equal -32 = 32 input frames, -64 = 64 input frames, ...

Context clustering

- Averaged unspeech vectors across time: one 100d vector per utterance
- We use HDBSCAN* to cluster, a modern density based cluster algorithm²
- \blacksquare Scales well to large quantities (average case complexity $\approx N$ log N)
- Parameters are easy to set, no epsilon like in vanilla DBSCAN

²L. McInnes, J. Healy, and S. Astels, HDBSCAN*: Hierarchical density based clustering," The Journal of Open Source Software, vol. 2, no. 11, p. 205, 2017.

Context clustering - NMI

Table: Comparing Normalized Mutual Information (NMI) on clustered utterances from TED-LIUM using i-vectors and (normalized) Unspeech embeddings with speaker labels from the corpus. "-sp" denotes embeddings trained with speed-perturbed training data.

Embedding	Num. clusters		Outliers			NMI			
	train	dev	test	train	dev	test	train	dev	test
TED-LIUM IDs	1273 (1492)	14	13	3	4	2	1.0	1.0	1.0
i-vector	1630	12	10	8699	1	2	0.9605	0.9804	0.9598
i-vector-sp	1623	12	10	9068	1	2	0.9592	0.9804	0.9598
unspeech-32-sp	1686	16	12	3235	22	32	0.9780	0.9536	0.9146
unspeech-64	1690	16	11	5690	14	21	0.9636	0.9636	0.9493
unspeech-64-sp	1702	15	11	3705	23	25	0.9730	0.9633	0.9366

Context clustering for ASR

Context clustering for ASR WER results

Table: WERs for different context IDs for speaker adaptation in TDNN-HMM ASR models. (One speaker per talk, one speaker per utterance, unspeech hdbscan IDs)

Acoustic mode	Spk. div.	Dev WER	Test WER
GMM-HMM	per talk	18.2	16.7
TDNN-HMM		7.8	8.2
GMM-HMM	per utt.	18.7	19.2
TDNN-HMM		7.9	9.0
GMM-HMM	Unspeech	17.4	16.5
TDNN-HMM	64	7.8	8.1

TDNN-HMM models (3)

append context vectors to input

Note that the standard TDNN-HMMs recipes in Kaldi also use ivectors (speaker vectors) similarly.

Table: WER for TDNN-HMM chain models trained with Unspeech embeddings on TED-LIUM.

Context vector	Dev WER	Test WER
(1) none	8.5	9.1
(2) i-vector-sp-ted	7.5	8.2
(3) unspeech-64-sp-ted	8.3	9.0
(4) unspeech-64-sp-cv	8.3	9.1
(5) unspeech-64-sp-cv + (2)	7.6	8.1
(6) unspeech-64-tedx	8.2	8.7
(7) unspeech-128-tedx	8.2	8.9

Unspeech contexts in TDNN-HMMs WER results out-of-domain test data

Table: Training on TED-LIUM and decoding on Common Voice V1.

Context vector	Dev WER	Test WER
(1) none	29.6	28.5
(2) i-vector-sp-ted	29.0	28.2
(3) unspeech-64-sp-cv	27.9	26.9
(4) unspeech-64-sp-cv + (2)	28.2	27.4
(5) unspeech-64-tedx	28.8	27.5
(6) unspeech-128-tedx	28.7	28.0

Conclusion

- We showed a simple unsupervised context embedding method, that can be trained on large amounts of unlabelled data
- Our context embeddings contain speaker characteristics
- Our method can be used for context clustering
- Context cluster ids can aid speaker adaptation in acoustic models when no speaker information is available
- Can help in domain adaptation, when the unspeech models are trained on unlabelled data of the target domain

http://unspeech.net

 http://unspeech.net - Download model source code (Python3/Tensorflow), pretrained models and documentation

- Cluster a speech corpus in-domain, to help speaker adaption methods in HMM-GMM and (T)DNN-HMM acoustic models; without the need for speaker annotations or trained speaker embeddings;
- · As a context embedding in acoustic models: provide additional information to acoustic models.

Questions?

now

- after the session
- or mail me: milde@informatik.uni-hamburg.de

Extra slides

Automatic Speaker Clustering (Jin et. al 1997):³

- "Our algorithm takes the advantage [...] that consecutive segments are more likely to come from the same speaker"
- "In practice, we regard speaker as a generic concept which really means speaker with channel and background condition"
- We call this generic concept "context"

³H. Jin, F. Kubala, and R. Schwartz, "Automatic speaker clustering," in Proceedings of the DARPA speech recognition workshop, 1997, pp. 108–111